

OSU EXTENSION SERVICE

Defining the Yield-Quality Paradigm for Pinot Noir

Dr. Patty Skinkis, Professor & Viticulture Extension Specialist

March 21, 2024 – LIVE Annual Meeting

Questioning the Yield Quality Paradigm

82% conduct cluster thinning

67% target yield: 2 – 2.75 tons/acre

40 hours/acre manual labor

Statewide Crop Load Project

Objectives

- 1. Engage industry in the research process
- 2. Understand yield, site characteristics,

and climate effects on vine health,

fruit/wine quality

- 3. Develop yield management **guidelines** that balance quality and production goals
- 4. Determine the future of yield management with climate change

(i) Start presenting to display the poll results on this slide.

Audience Poll Results

Have you heard of the Statewdie Crop Load Project?

Do you produce Pinot noir?

Audience Poll Results

Which cultivars do you focus yield targets (i.e., cluster thin more)?

Industry Participation (2012-2021)

 Adelsheim
 Airlie Winery
 Archery Summit
 A to Z Wineworks
 Atlas Vineyard Mgmt

 Björnson Vineyard
 Bethel Heights Vineyard
 Chehalem Wines

Cristom Dion Vineyard Domaine Drouhin of Oregon Domaine Serene

Duck PondForest Hills FarmsJackson Family WinesJohan VineyardsKen Wright CellarsLemelson Vineyards

Winter's Hill Winery

Results Partners Stoller Van Duzer Vineyards Willakenzie Estate

Winemakers Investment Properties/Precept Wine

Total Participation

25 companies28 vineyards5 Counties

Annually: 10-15 vineyards

6 AVAs

Industry Participation

Company Classification		Vineyard Size (acres)		Winery Size (cases)	
Vineyard Only	18%	Small (< 100)	39%	Small (< 10,000)	20%
Estate vineyard and winery	54%	Medium (100-300)	42%	Medium (10,000 - 29,999)	50%
Vineyard and winery	28%	Large (>300)	19%	Large (30,000-100,000)	15%
				Very Large (>100,000)	15%

Experimental Design

Company selected cluster thinning treatments 0.5, 1, 1.5, and 2 clusters/shoot or Full Crop Randomized complete block design Three field replicates sampled

Treatment	% clusters removed	Clusters count/ft
0.5 clusters/shoot	64	2
1 cluster/shoot	42	3
1.5 clusters/shoot	22	4
2 clusters/shoot	8	5
Full Crop	0	5

Harvest Yields – *by Year*

10-year mean: 0.94 lb/ft 1.5 kg/m

Harvest Yields 2012-2021

Mean <u>+</u> SD, all vineyards and treatments

Photo by Dana Estensen

Yield Impacts – *Cluster weight*

Cluster weight variation by year (2012-2021)

Yield Components – *Shoot density*

All vineyards were cane pruned and shoot thinned to same density per linear ft of canopy

Shoot Density by Year

Yield Components - Fruitfulness

Mean <u>+</u> SD, all vineyards and treatments

Harvest Yield – *Treatment x Year*

Cluster thinning will hasten berry ripening and improve fruit and wine concentration.

Oregon State University Extension Service

Results – Fruit Composition All Years, All Sites

10-15 sites/year 42-85% some effect 15-58% no effect 6-25% primary ripeness

> No consistent differences by crop level!

Results - All Vineyards, All Years

For every 0.7 lb/ft of cluster thinning, there is an expected increase in TSS by 0.21°Brix

Most thinning reduces crop level by < 0.7 lb/ft!

What we can learn from high yield years...

- 13 Pinot noir vineyards
- 4 had cluster thinning impacts on TSS
 - Higher yields and/or greater variance in yields across treatments

Impact of Cluster Thinning - 4 of 13 Vineyards (2015)

Yield x TSS at Harvest 2015 30.0 28.0 y = 0.1582x + 24.15 $R^2 = 0.005$ 26.0 Total Soluble Solids (Brix) 24.0 22.0 *********** 20.0 y = -1.23x + 25.13318.0 $R^2 = 0.1601$ 16.0 14.0 12.0 10.0 0.5 2.5 0.0 1.0 1.5 2.0 3.0 3.5 Yield (lb/ft) • Vineyards with significant ANOVA for Brix Vineyards without difference

All 4-Vineyard Model				
lb/ft	TSS			
0.75	23.9			
0.80	23.9			
0.90	23.9			
1.0	23.9			
1.1	23.8			
1.2	23.7			
1.3	23.5			
1.4	23.4			
1.5	23.3			
1.6	23.2			
1.7	23.0			
1.8	22.9			
1.9	22.8			
2.0	22.7			

OREGON STATE UNIVERSITY 19

Impact of Cluster Thinning - *pH*

Vineyards with Brix difference at Harvest 2015 did not have pH effect with crop level...

No yield – pH relationship

Case where thinning is needed – *high density*

Canopies shade the next row over between hedging

Why so few differences?

- Shoot density fixed by cane pruning and shoot thinning practices
- Shoot and cluster density is low = low yield range for trial
- Vines were not over-cropped in most years
- Adequate heat units and season length for ripening

Over-cropping will stress vines and reduce vine growth requiring more inputs.

Oregon State University Extension Service

Results – *Vine balance*

Crop Load Index (Yield/PW) 2012-2021

Results – *Vine Size/Vigor*

No differences in veraison nutrient status

No differences in dormant pruning weights

Seasonal conditions 2012-2021

- Compared to 30-year average:
 - <0.5 to 3.0°F warmer</p>
 - >400 GDD₅₀ warmer in 2014 and 2015
 - Less than average rainfall 4 of 10 years

How was wine quality impacted?

Oregon State University Extension Service

Wine Sensory Results

OSU Winemaker Panel

In-house Sensory

Industry Technical Tasting

Determining Impact & Adoption

Results – Industry Survey 2018

- Crop thinning practiced by 90%
 - Yield targets increased
- 65% ↑ yields over last 5-8 years
 - Yields \uparrow by 0.5 1.0 T/A or 10-40%
- Freedom to negotiate yield targets
- Increased knowledge to quantify vine balance
- More contracts compared to 2012

Results – *Collaborators 2018*

- 80% confident with higher yields
- 96% evaluated wines in-house
- 41% found little to no sensory difference between crop levels

Focus Group Meetings 2024

- 1. What changes have you made?
- 2. Which changes made the most impact financially?
- 3. Are there current/future potential economic impacts to be experienced because of this study?
- 4. How important is yield management in contributing to fruit and wine quality?

Focus Group Results

- 100% confidence in higher yields
- Adopted increases in all wine production tiers
- Manage to seasonal conditions and site vs. prescribed yield
- Realized increased revenue and efficiency increased profits, labor savings
- Using "smarter" yield metrics (lb/ft)
- Impact beyond individual company

(i) Start presenting to display the poll results on this slide.

Audience Poll Results

Have you changed your Pinot noir yield targets in the past 5-8 years?

Audience Poll Results

What other cultivars have you modified yields over the past 5-8 years?

Oregon Yield Variability History

USDA-NASS 1990-2012, SOURCE 2012-2017, U of O 2018-2023

Acknowledgments

- Faculty Research Assistants
 - Louis Delelee
 - Cody Copp
 - Annie Chozinski
 - Amelia Doyle
 - Michael Kennedy
 - Kelli Whisenhunt
- Graduate Assistants
 - Mathew Lange
 - Jeremy Schuster
 - Justin Litwin
 - Miranda Ulmer
 - Alison Reeve
 - Dionne Uzes

EST 1992 1992 Northwest Center For small fruits research

- Undergraduate Assistants
 - Maya Greydanus
 - Louis Corneaux
 - McKenzie Blaylock
 - Taylor Boquist
 - Sierra Laverty
 - Erica Miller
 - Victoria Skillman

Questions?

Patty Skinkis, PhD Professor & Viticulture Extension Specialist patricia.skinkis@oregonstate.edu 541-737-1411

Oregon State University Extension Service