2019 LIVE Green and Yellow Lists

The LIVE Green and Yellow Lists are intended to be used as companion documents to the LIVE Vineyard Checklist. These documents contain information on and controls for the common vineyard pressures in the Pacific Northwest.

Green List controls are cultural and biological in nature. Yellow List controls are pesticides that are approved for use after Green List options have been exhausted. Please pay close attention to restrictions on the Yellow List and be sure to read the label of each material you use before you use it.

This list is maintained by the LIVE Technical Committees of the Willamette Valley, Southern Oregon, and Eastern Oregon/Washington/Idaho. Questions can be directed to info@livecertified.org or to your local LiVE Technical Committee Chairperson.
2019 LIVE Vineyard Pressure Index

Region 1 refers to viticultural areas with a cooler, wetter growing season. This includes areas west of the Cascades and above the North Umpqua River in Oregon—e.g., the northern Umpqua Valley, the Willamette Valley, the western Columbia Gorge, and Puget Sound.

Region 2 refers to areas with a warmer, drier growing season. This includes areas east of the Cascades and below the North Umpqua in Oregon—e.g., the central and southern Umpqua Valley, the Rogue Valley, the Columbia Valley, and the Snake River Valley.

The Green List contains cultural and biological management options supporting integrated pest management (IPM) and compliance with LIVE standards. LIVE standards adapt IPM principles to Northwest winegrowing regions and weigh impacts to humans and the environment.

The Yellow List is LIVE’s reference list of approved pesticide controls and restrictions, permitted for key pressure occurrences not adequately managed with Green List measures.

Active ingredients marked with the fish icon are those that are found on the Salmon-Safe High Hazard List and present a danger to aquatic organisms. LIVE recommends a 100ft buffer area where no explicit restriction is stated.

Key pressures are any agricultural pressure (pests, diseases, etc.) that cause region-wide and significant economic damage, necessitating annual monitoring and treatment. Other pressures of note are included here with links to Green List management options.

These documents reflect the work of university researchers and experienced vineyard managers, but each vineyard is unique and LIVE does not guarantee the efficacy of any method. Contact admin@livecertified.org with questions.

<table>
<thead>
<tr>
<th>Key Pressure</th>
<th>Region 1</th>
<th>Region 2</th>
<th>Green List</th>
<th>Yellow List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botrytis cinerea</td>
<td></td>
<td></td>
<td>[fish]</td>
<td>[sun]</td>
</tr>
<tr>
<td>Powdery Mildew</td>
<td></td>
<td></td>
<td>[fish]</td>
<td>[sun]</td>
</tr>
<tr>
<td>Weeds</td>
<td></td>
<td></td>
<td>[fish]</td>
<td>[sun]</td>
</tr>
<tr>
<td>Rust Mite</td>
<td></td>
<td></td>
<td>[fish]</td>
<td>[sun]</td>
</tr>
<tr>
<td>Blister Mite</td>
<td></td>
<td></td>
<td>[fish]</td>
<td>[sun]</td>
</tr>
<tr>
<td>Bud Mite</td>
<td></td>
<td></td>
<td>[fish]</td>
<td>[sun]</td>
</tr>
<tr>
<td>Spider Mite (Pacific, Two-spotted, Willamette)</td>
<td></td>
<td></td>
<td>[fish]</td>
<td>[sun]</td>
</tr>
<tr>
<td>Cutworm</td>
<td></td>
<td></td>
<td>[fish]</td>
<td>[sun]</td>
</tr>
<tr>
<td>Thrips</td>
<td></td>
<td></td>
<td>[fish]</td>
<td>[sun]</td>
</tr>
<tr>
<td>Leafhopper</td>
<td></td>
<td></td>
<td>[fish]</td>
<td>[sun]</td>
</tr>
<tr>
<td>Mealybug and Grapevine Leafroll</td>
<td></td>
<td></td>
<td>[fish]</td>
<td>[sun]</td>
</tr>
<tr>
<td>Lecanium Scale Insects</td>
<td></td>
<td></td>
<td>[fish]</td>
<td>[sun]</td>
</tr>
<tr>
<td>Phylloxera</td>
<td></td>
<td></td>
<td>[fish]</td>
<td>[sun]</td>
</tr>
<tr>
<td>Rodents</td>
<td></td>
<td></td>
<td>[fish]</td>
<td>[sun]</td>
</tr>
<tr>
<td>Trunk diseases</td>
<td></td>
<td></td>
<td>[fish]</td>
<td>[sun]</td>
</tr>
<tr>
<td>Red Blotch</td>
<td></td>
<td></td>
<td>[fish]</td>
<td>[sun]</td>
</tr>
<tr>
<td>Other Pressures</td>
<td></td>
<td></td>
<td>[fish]</td>
<td>[sun]</td>
</tr>
<tr>
<td>Vertebrates (deer, birds, etc.)</td>
<td></td>
<td></td>
<td>[fish]</td>
<td>[sun]</td>
</tr>
<tr>
<td>Flea Beetle</td>
<td></td>
<td></td>
<td>[fish]</td>
<td>[sun]</td>
</tr>
</tbody>
</table>
2019 LIVE Green List

General Management Practices

Planning and planting vineyards
- When planting a new vineyard, the grower should prepare a written vineyard development and risk assessment plan
- Disease tolerant clones should be considered
- Existing hedges and grass strips should be retained
- A minimum of 5% (ideally greater than 15%) of the farm managed as ecological infrastructure
- Patches of native/natural trees, shrubs and grasses as appropriate for the area should be retained or planted
- A wind erosion mitigation plan must be developed and executed

Fertilization
- Fertilizer applications must be based on soil and tissue analysis
- If synthetic nitrogen is applied, it is only done so between March 1st and October 30th
- Nitrogen input should not exceed 10lbs per ton of fruit harvested unless more is justified by the fertilization plan
- Green manure and composting should be used to improve fertility and soil humus
- The amount of phosphorus, potassium, and magnesium applied should not exceed 35lbs. of P2O5, 90lbs of K2O, and 45lbs. of Mg per acre, unless ratios between phosphorus, potassium, magnesium and calcium are not in balance and need to be corrected

Soil, habitat, and canopy management
- Mechanical cultivation or mulching is used for in-row weed control
- Maintain a balanced open canopy with low leaf layer (for example, 1.5 leaf layer or less)
- Maintain a minimum of ten different botanical species (15+ optimum)
- Irrigation schedule is based on monitored sensor systems

Key beneficials
- If a chemical control method is needed, the most selective one should be considered first, to protect populations of beneficial insects.
 - Predatory mites (Typhlodromus pyri) - a generalist predator and the most beneficial mite in this region that seeks refuge in wild blackberry near vineyards in Western Oregon and Washington. Maintain or establish populations and restrict use of products that are toxic to predatory mites.
 - Parasitoid/Predatory Complex - an insect whose immature stages develop on or inside a single host eventually killing that host
 - Ladybeetle (Cryptolaemus montrouzieri) for mealybug
 - Predatory wasps (including Anagrus spp for leafhopper) - Encourage populations with overwintering sites
 - Lacewings (Chrysoperla spp) for mealybug and general

REGION 1

- Phylloxera resistant rootstocks are strongly encouraged when replanting
- Total green cover in winter months
- Green cover in alleyways/restrict summer competition in vine rows
- Alternating mowing regime applied and permanent flower supply provided
- Limit number of shoots per foot (3 to 6 shoots) and maintain an open low density canopy

REGION 2

- High wind is a factor in the Columbia Valley AVA. Wind erosion is a serious concern and growers must use practices that prevent soil loss.
- Strict adherence to virus and insect quarantines is required and the use of grafted planting material (American rootstock) against Phylloxera or nematodes should be considered if the climate allows
- Standing cover of alleyways maintained in winter months.
- Green or dried vegetation maintained throughout rest of season
- Alternating mowing regime applied
- Mechanical cultivation or mulching for in-row weed control
Botrytis cinerea

Botrytis cinerea is a fungus that causes Botrytis bunch rot. Non-chemical control includes preventing excess vigor and maintaining an open canopy.

This disease is common on the west side of the Cascades but a sporadic problem in the arid viticulture regions of the PNW.

Many fungal and bacterial organisms, of which Botrytis cinerea is the most important, can infect grapes and result in a bunch rot. B. cinerea has a large host range and grows and sporulates on most of them. The fungus overwinters and oversummers as black sclerotia on old cluster stems, canes, and mummified grapes. Spores spread by wind. Young, succulent shoots can be infected in spring, especially if injured by hail.

Flower parts frequently are infected and can serve as a source of the fungus within the developing bunch. Young shoots and leaves infected in spring may develop brown, water-soaked areas. These areas generally girdle the shoot, causing it to wilt and die back. The characteristic gray moldy growth may or may not be present.

Generally, rotted berries appear in late summer and autumn as small, brown spots on maturing berries. The berry skin may slip off easily when rubbed. Later, characteristic tufts of gray fungal growth appear on the surface of infected berries. Often, rotted berries are near the center of the bunch. The rot then spreads quickly and may encompass most of the bunch. Other organisms may invade the berries later, producing a large variety of colors, smells, and tastes. Occasionally, immature berries may develop a soft brown rot early in summer.

Wet weather favors infection and disease development, especially near harvest when canopies are dense and berries accumulate sugar. The fungus can quickly spread from berry to berry within ripening bunches and can develop readily on wounded or split berries.

Botrytis cinerea will infect grape berries from 53 to 86°F with as little as 4 hours of berry wetness. The number of berries infected, however, rises as hours of berry wetness increases. A forecasting program assigns a medium bunch rot risk at 60°F with 15 hours of berry wetness but a high risk if berries have been wet 17.5 hours.

Fungicides are to be applied after a medium risk during the growing season. This program has not been evaluated in the Pacific Northwest.

Cabernet Sauvignon is the least susceptible wine grape grown in Oregon. Gewurtztraminer is less susceptible than Chardonnay, Pinot Noir, and Riesling. Bunches that are more tight or compact are at higher risk of the disease.

Under certain environmental conditions, white grapes infected solely by B. cinerea may develop a special rot known as noble rot. These grapes are used to produce a very sweet wine.

CULTURAL AND BIOLOGICAL CONTROL MEASURES

• Prevent excess vigor

• Maintain open canopy, removing east side leaves after fruit set

MONITORING AND DECISION-MAKING

• Monitor temperature and hours of berry wetness to assess risk (http://uspest.org/wea/)

RESTRICTED AND PROHIBITED PRACTICES

• Reference the Yellow List for accepted controls. Avoid consecutive use of fungicides with the same mode of action and limit applications from the same chemical family (except for sulfur/biorationals).

To prevent resistance, limit any application of FRAC 11 and FRAC 3 fungicide to one (1) application each in 2019.
Powdery Mildew

Powdery mildew is a fungal disease. Non-chemical control includes preventing excess vigor, timely suckering, and maintaining an open canopy. Rotate controls by mode of action for resistance management.

Erysiphe necator (formerly Uncinula necator) is a fungal disease common to all areas of the Pacific Northwest. The disease tends to be more severe on the west side of the Cascades but is a chronic problem in arid districts where over-the-canopy irrigation is used for early-season frost protection or watering.

CULTURAL AND BIOLOGICAL CONTROL MEASURES

- Prevent excess vigor
- Maintain open canopy and practice timely suckering

REGION 1

REGION 2

YELLOW LIST

Chasmothecia on the exfoliating bark release sexual spores during rainy weather above 50°F from budbreak through bloom. This weather also favors infection that results in individual powdery spots, called colonies, on the surface of leaves growing close to the bark. Many asexual spores (conidia) are produced on the surface of powdery mildew colonies. Temperatures over 85°F and/or sunlight inhibit conidia germination. Free water from rain and/or irrigation can wash conidia off of a colony, burst conidia, or result in poor or abnormal germination of the conidia.

Grape berries are highly susceptible from the time calyptras (hoods) fall off to shortly after bloom when berries are about pea size (BBCH 73 to 75). Susceptibility of the fruit drops rapidly after that time. Grapes do not get new infections on fruit after 8% Brix but can still have sporulation up to 15% Brix. Leaves and canes, however, can be infected up to and past harvest.

CULTURAL AND BIOLOGICAL CONTROL MEASURES

- Prevent excess vigor
- Maintain open canopy and practice timely suckering

REGION 1

REGION 2

YELLOW LIST

Powdery Mildew can attack all aboveground plant parts. Colonies are more easily detected in full sunlight with the sun over your shoulder. In early stages, whitish or grayish patches are on leaves and, if severe, ultimately cover both surfaces. Later in the season, the mildew darkens and is peppered with minute black dots (chasmothecia). On fruit, the fungus at first may look grayish or whitish but later has a brownish, russeted appearance. Infected fruit cracks and drops from the cluster. Even blossoms sometimes can be infected, causing them to dry up or fail to set fruit. When green shoots and canes are infected, the affected tissues appear dark brown to black in feathery patches. Patches later appear reddish brown on the surface of dormant canes. Flag shoots are difficult to detect. Some young shoots may be covered with a large white mass of threads or mycelium. Others may have only a hint of thin threads on the shoot. Shoots generally are delayed in bud break and appear stunted and somewhat yellowed compared to healthy shoots.

MONITORING AND DECISION-MAKING

- Monitor temperature, growth stage, and Brix to assess risk

REGION 1

REGION 2

YELLOW LIST

RESTRICTED AND PROHIBITED PRACTICES

- Reference the Yellow List for accepted controls. Avoid consecutive use of fungicides with the same mode of action and limit applications from the same chemical family (except for sulfur/biorational).
- To prevent resistance, limit any application of FRAC 11 and FRAC 3 fungicide to one (1) application each in 2019
- For powdery mildew - per treatment limit of 5 lb/acre of active ingredient. Total limit of 35 lb/acre per year. Per treatment limit may be exceeded up to label limit if conditions warrant and justified by scouting records, only if recommended by regional IPM advisor and/or extension. It is strongly discouraged to approach the annual limit except in years with severe mildew conditions. Overuse of sulfur is harmful to beneficial mites. See mite sections for mite application restrictions.
2019 LIVE Green List

This is a compilation of management options for vineyards in the Pacific Northwest, supporting integrated pest management (IPM) and compliance with LIVE standards. LIVE standards adapt IPM principles to Northwest winegrowing regions and weigh impacts to humans and the environment. Contact admin@livecertified.org with questions.

Weeds

<table>
<thead>
<tr>
<th>REGION 1</th>
<th>REGION 2</th>
<th>YELLOW LIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Cloud]</td>
<td>![Sun]</td>
<td>![Arrow]</td>
</tr>
</tbody>
</table>

Non-chemical control includes planting competitive cover crop, mechanical cultivation, and in-row mulch. A weed survey is an important monitoring tool.

LIVE provides a weed survey template as a monitoring tool, and a completed survey is required for the use of pre-emergent herbicides in order to confirm that the herbicide's target weed(s) are present in the vineyard.

Some common vineyard weeds:
- Bittersweet Nightshade (Solanum dulcamara)
- Blue weed (Echium vulgare)
- Broadleaf dock (Rumex crispus)
- Canada Thistle (Cirsium arvense)
- Common Evening primrose (Oenothera biennis)
- Common Groundsel (Senecio vulgaris)
- Common knotweed (Polygonum aviculare)
- Common mallow (Malva neglecta)
- Common plantain (Plantago major)
- Crab Grass (Digitaria sanguinalis)
- Field Morning Glory (Convolvulus arvensis)
- Field Mustard (Brassica campestris)
- Green Bristlegrass (Setaria viridis)
- Henbane (Hyoscyamus niger)
- Himalayan Blackberry (Rubus procerus)
- Kentucky Bluegrass (Poa pratensis)
- Lambs Quarters (Chenopodium album)
- Poison Oak (Rhus diversiloba)
- Prickly Lettuce (Lactuca serriola)
- Prickly Sow-thistle (Sonchus asper)
- Queen Anne's Lace (Daucus carota)
- Red Root, Pig weed (Amaranthus retroflexus)
- Reed Canary Grass (Phalaris arundinacea)
- Scotch Broom (Cytisus scoparius)
- Shepherds purse (Capsella bursa-pastoris)
- St John's-wort (Hypericum perforatum)
- Watsons Willow-herb (Epilobium watsonii)

CULTURAL AND BIOLOGICAL CONTROL MEASURES
- Plant competitive cover crop
- Mechanical cultivation
- In-row mulch

MONITORING AND DECISION-MAKING
- Identify and document specific weeds

RESTRICTED AND PROHIBITED PRACTICES
- Reference the Yellow List for accepted herbicidal controls
- Prior to use of accepted pre-emergent herbicides, complete a weed survey
- Grower should limit glyphosate use to one (1) or fewer applications per season in LIVE Region 1 or two (2) or fewer applications per season in LIVE Region 2. Chemical control of weeds should be used only to supplement non-chemical means.
- Diquat, Paraquat, and herbicides with residual properties greater than one growing season are prohibited
- Use of chemical herbicides on more than 50% of the vineyard floor under and between vine rows is prohibited
Grape rust mites cause damage to newly growing tissues in spring. Shortly after bud break, rust mite damaged leaves are crinkled and deformed, shoots will have stunted growth, and scarring may be found on the stem tissues. During summer, rust mites are found on leaves and can cause stippling of leaves. Feeding of high populations of rust mites on leaf surfaces late in summer and early fall lead to a blackening or bronzing of leaves.

Grape rust mites overwinter as adult females under the bark of the vine, in crevices and between the outer bud scales and bud tissues, and they migrate from these areas in early spring to developing shoots. Mites may congregate and feed on young susceptible shoots, then move on to opening foliage where they continue feeding during summer. Unlike most other mite species, grape rust mites feed on the top and bottom surfaces of leaves. Feeding on epidermal tissue of leaf surfaces results in stippling of the leaf during spring and summer, and they may cause visual discoloration of leaves that begins as dark-green to black and become a bronze or brown color during later summer when leaf populations are high. Stem tissues or leaves can be collected and observed for rust mite presence in spring and summer. Scout for grape rust mite populations during summer by looking for leaf stippling (early- to mid-summer) or leaf discoloration. Scouting during the late dormant season involves collecting dormant 1-year old canes to examine buds for mite presence before pruning ensues. Also collect loose bark from the trunk of the vine.

To see images of the grape rust mite, see Grape Rust Mite on eViticulture.org: http://www.extension.org/pages/33107/grape-rust-mite.

Updated monitoring protocols are outlined at http://blogs.oregonstate.edu/owri/2015/04/28/rust-mites-can-cause-damage-shortly-after-budbreak/

Grape rust mites and other eriophyid mites are microscopic pests that overwinter in vineyards—careful monitoring is essential, and dormant buds can be examined for mite presence.

Grape rust mites are tiny (0.1 to 0.2 mm long), wormlike and white, much like the bud and erineum mite. They have two pair of legs near the head end. These mites are hard to see without magnification (45X or higher under a microscope), and the damage they cause is usually the first indication of their presence.

CULTURAL AND BIOLOGICAL CONTROL MEASURES

• Promote predatory mite populations

MONITORING AND DECISION-MAKING

• Monitor throughout the year, including the dormant season. See monitoring protocols link above.

• Confirm presence from previous growing season or dormant buds of current growing season

• Many occurrences of eriophyid mites do not constitute economic risk, or require chemical control

RESTRICTED AND PROHIBITED PRACTICES

• Reference the Yellow List for accepted acaracidal controls

• For sulfur, apply a maximum of 5 lbs of actual sulfur at wooly bud and 5 lbs ten days later

See Blister Mite on next page
2019 LIVE Green List

This is a compilation of management options for vineyards in the Pacific Northwest, supporting integrated pest management (IPM) and compliance with LIVE standards. LIVE standards adapt IPM principles to Northwest winegrowing regions and weigh impacts to humans and the environment. Contact admin@livecertified.org with questions.

REGION 1

REGION 2

YELLOW LIST

Blister Mite

Grape erineum/blister mite is microscopic, wormlike, and white-yellow in color. It overwinters between outer bud scales and bud tissue and feeds on leaves during spring and summer. The upper leaf surface becomes blistered, and the lower leaf surface of the blister appears hairy and white, almost resembling fungal growth. The lower leaf surface turns from a white color early in the season and progresses to yellow or brown later in the season. In severe cases, these mites may infest clusters in early spring.

Colonies of mites live in blisters (erinea) formed by their feeding on lower leaf surfaces. The blisters are comprised of masses of enlarged leaf hairs. These blisters protect mites from natural enemies and direct contact of pesticide sprays. As the population increases, some move to new areas or other leaves and form new erinea. From mid-August until leaf drop, there is a movement from the erinea back to overwintering sites beneath the bud scales.

It is common for erineum mites to be found sporadically throughout western Oregon vineyards in any given year. In recent years, there has been an increase in erineum mite presence in vineyards where there has been reduced sulfur use. This rarely leads to economic problems or crop losses.

Blister Mite

<table>
<thead>
<tr>
<th>REGION 1</th>
<th>REGION 2</th>
<th>YELLOW LIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Cloud]</td>
<td>![Sun]</td>
<td>![Chevron]</td>
</tr>
</tbody>
</table>

CULTURAL AND BIOLOGICAL CONTROL MEASURES

- Promote predatory mite and beetle populations

MONITORING AND DECISION-MAKING

- Monitor throughout the year, including the dormant season. See monitoring protocols link in Rust Mite entry.
- Confirm presence from previous growing season or dormant buds of current growing season
- Many occurrences of eriophyid mites do not constitute economic risk, or require chemical control

RESTRICTED AND PROHIBITED PRACTICES

- Reference the Yellow List for accepted acaracidal controls
- Two (2) S1b sprays of sulfur when conditions dictate
Bud Mite

REGION 2 YELLOW LIST

Bud mite and other eriophyid mites are microscopic pests that overwinter in vineyards—careful monitoring is essential, and dormant buds can be examined for mite presence.

Grape bud mites are tiny (0.1 to 0.2 mm long), wormlike, and whitish yellow with two pairs of legs near the head. They can only be seen under magnification (45x or higher on a microscope), and the damage they cause is usually the first indication of their presence.

The grape bud mite resides within the bud and causes damage by feeding on the stem, leaf and flower primordia within the bud. In spring, damaged buds may be delayed and only weak shoots may grow, if any at all from damaged buds. Vines infested with bud mites may exhibit erratic budbreak, stunted shoots, malformed basal leaves and have few flower clusters that may consist of only a few berries. Stunted shoots may have arrested development and fail to grow beyond a few inches. Damage is most visible shortly after budbreak and until shoots are less than 6 inches in length. Symptoms observed from mite feeding should not be confused with symptoms of nutrient deficiency (boron or zinc), low reserve carbohydrates, herbicide damage, frost, or thrips damage. There are distinct differences between bud mite-related damage and other factors.

Grape bud mites overwinter as adults inside buds where they feed on bud tissues and may kill the overwintering bud. When buds begin to swell in spring, mites migrate to newly developing tissues where they feed and lay eggs. Eggs hatch within 5 to 10 days and develop into adults within 14 days. Bud mites move to the newly forming buds in the axis of the leaf petiole where they reside until budbreak the following year. During the next growing season, once growth commences, mites residing in the inner scales are distributed along the shoot length as the shoot develops. Those mites in the outer scales remain at the base of the shoot.

Rust mites may be found in buds, particularly at the outer bud scales while bud mites may be in the inner portion of the bud. The two mites look similar upon visual inspection. If high populations are present in dormant buds, damage may have already been done, and spring control will reduce populations of bud mites for future years.

CULTURAL AND BIOLOGICAL CONTROL MEASURES

- Promote predatory mite and beetle populations

MONITORING AND DECISION-MAKING

- Monitor throughout the year, including the dormant season. See monitoring protocols link in Rust Mite entry.
- Confirm presence from previous growing season or dormant buds of current growing season
- Many occurrences of eriophyid mites do not constitute economic risk, or require chemical control

REstricted AND PROHIBITED PRACTICES

- Reference the Yellow List for accepted acaracidal controls
Spider mites are microscopic pests that overwinter in vineyards. Non-chemical control includes promotion of vine health and predatory mites, and dust abatement. Careful monitoring is essential.

CULTURAL AND BIOLOGICAL CONTROL MEASURES

- Promote populations of natural enemies with low/"softer" chemical inputs
- Use water (or other tacking material) or vineyard floor vegetation to control dust

MONITORING AND DECISION-MAKING

- Many occurrences of spider mites do not constitute economic risk, or require chemical control
- Economic damage unlikely at levels below 15-20 per leaf

RESTRICTED AND PROHIBITED PRACTICES

- Reference the Yellow List for accepted acaracidal controls
- Targeted spot spraying is preferred

REGION 1

- **REGION 2**

YELLOW LIST

Spider Mite

- Adults are about 0.02 inch long. They have eight legs and an oval body. Eggs are spherical and translucent white when first laid. Newly hatched larvae are six-legged and go through two nymphal stages before reaching adulthood.

- Spider mites damage grape leaves by puncturing cells and sucking out the contents. This produces small yellow-white spots on the upper leaf surface. In heavy infestations, the spots coalesce and the leaf turns yellow or reddish-bronze. In general, spider mites are not consistently a major problem on Pacific Northwest grapes. Whenever a problem does occur, it invariably can be traced to use of broad-spectrum insecticides and/or environmental conditions conducive to mite outbreaks (e.g., hot, dry, and dusty conditions).

- Spider mites overwinter as fertilized females under bark or in soil debris. They move to young foliage when buds break in spring and produce many generations from spring to autumn. Females can lay up to 10 eggs per day and more than 200 during their lifetime. Egg-to-adult development can take 7 to 10 days during summer. They thrive under hot, dry conditions. Large colonies of mites produce webbing. Dispersal occurs mainly through wind transport.

- Thresholds have not yet been established, but economic damage is unlikely at levels below 15 to 20 per leaf. Treatment thresholds must always consider the presence of predatory mites, which are major biological control agents.
Cutworms are caterpillars and identification is important. Most damage is caused by climbing cutworms. Non-chemical control includes parasitic wasps and predatory insects, and cultivation timing. Listed for Region 2 only.

Cutworms injure grapes primarily in early spring at or shortly after bud break when they feed on developing buds and emerging young shoots. When primary buds/shoots are destroyed, secondary buds may emerge but fruitfulness of secondary shoots varies according to variety and is often lower than primary shoots leading to reduced yields.

The spotted cutworm overwinters in the soil or under debris as a partially grown second or third instar. Cutworms begin feeding on winter annual weeds during warm periods in February to March. By budbreak, they are nearly full grown. They remain under cover during the day (in cracks in the soil, plant debris, or under rough bark on the trunk), and climb vines at night to feed on buds and shoots. Not all cutworm species in vineyards will climb grapevines if broad-leaved weeds are available; many will stay on the vineyard floor. Recent research indicates that most damage to grapevine buds is caused by the two climbing cutworm species, Abagrotis orbis and Agrotis vetusta. Mature larvae return to the soil and pupate; the pupal stage lasts 7 to 10 days. Moths emerge from the soil in May and June. There are one or more generations per year, but only the overwintering cutworm population causes damage to grapevines.

Sampling for cutworms is difficult, and control decisions usually are based on levels of bud injury. Cutworm infestations usually are localized within vineyards and often occur in the same places each year. Commence monitoring during bud swell for the presence of bud feeding/injury by cutworms. Concentrate on areas with a history of cutworm damage. Randomly select 20 locations to sample. Check three vines within each location for buds damaged by cutworms (total of 60 vines). Treatment is justified when about 10 to 15% of buds in susceptible areas are damaged. Treatment of an entire vineyard is rarely needed as damage is often localized and limited in size. Continue monitoring until average shoot growth has reached 6 inches. If the population is not causing damage before this growth stage, foliar development will be sufficient to ensure production.

CULTURAL AND BIOLOGICAL CONTROL MEASURES

- Cultivation may reduce cutworm populations
- Maintain cover crop for alternate host species

MONITORING AND DECISION-MAKING

- Monitor vineyard for cutworms feeding on buds
- Reference the Yellow List for accepted insecticidal controls
- Maintenance and monitoring of untreated control areas is required
- Pyrethroid sprays on vine canopy and strip spray are prohibited
Thrips

<table>
<thead>
<tr>
<th>REGION 2</th>
<th>YELLOW LIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>☀️Thrips are small insects present in vineyards as wingless nymphs and winged adults, with some natural predators. Not all occurrences constitute economic risk—damage can be minor and cosmetic. Listed for Region 2 only.</td>
<td></td>
</tr>
</tbody>
</table>

Thrips commonly found on grapes are approximately 0.04 to 0.6 inch in size. Adult thrips are winged. Nymphs are wingless and usually yellow-orange. They usually appear at bloom as they feed on pollen and tender tissues. However, thrips have been found in early spring in Oregon vineyards, much earlier than bloom.

Thrips may scar very young berries as early as fruit set. Later, the scars can restrict berry growth, producing oddly shaped or scarred berries. Occasionally, large populations of thrips may damage shoots and leaves in spring, particularly when cool conditions restrict plant growth. Damage caused by thrips during this period has been reported to be similar to that of rust and bud mites (leaf deformation and shoot scarring). High thrips populations have been observed in western Oregon vineyards and have led to strange growth patterns; however, economic damage was not reported. Damage is usually minor and cosmetic on wine and juice grapes in the Pacific Northwest. These are of cosmetic concern for table grape production. Extremely high populations that cause greater damage are usually found in vineyards located near alternative wild hosts.

Western flower thrips appear to be the most important species on grapes in the Pacific Northwest. This species has up to five or six generations per year. Populations usually peak during spring, which may be a result of migration into vineyards from surrounding host plants that are beginning to senesce. Thrips overwinter as adults or nymphs.

Reproduction may be sexual or asexual. The minute eggs are laid in soft tissue, particularly in flowers. Each female lays about 20 eggs that hatch in about 5 days. Nymphs feed on the host through two nymphal stages lasting 7 to 12 days. Pupation occurs in soil debris. Adult thrips feed on pollen as well as plant tissues. Scarring has been observed on stem, leaf and berry tissue in Oregon.

Grape thrips overwinter as virgin females in the soil, and populations peak in midsummer. This species may be mostly responsible for young leaf and new growth damage during summer.

Thrips populations can be determined by counting nymphs and adults that have been knocked out of flowers or fruit clusters onto a board or into a container. Reliable thresholds have not been developed, although numbers in the range of 5 to 30 thrips per cluster are unlikely to be damaging. Populations on leaves can be identified using leaf washes in spring and summer using the alcohol wash method.

Monitoring and Decision-Making

- After budbreak, observe first few leaves for presence of thrips and thrips damage
- At bloom, observe flower clusters. More than 30 thrips per cluster may require direct control.

Cultural and Biological Control Measures

- Promote beneficial insect populations
- Maintain cover crop
- Alternate row mowing

Restricted and Prohibited Practices

- Reference the Yellow List for accepted insecticidal controls
Leafhopper

REGION 2

YELLOW LIST

Leafhoppers are insect pests that can damage leaves. Identifying the species and corresponding lifecycle is critical. Non-chemical control includes parasitic wasps, particularly Anagrus. Listed for Region 2 only.

CULTURAL AND BIOLOGICAL CONTROL MEASURES

- Promote beneficial insect populations, particularly Anagrus
- Alternate row mowing
- Leaf removal and suckering once eggs are laid

MONITORING AND DECISION-MAKING

- The threshold for direct control is 20 nymphs/leaf on average, depending on vine health and canopy size
- Consider thresholds/strategy based on risk, with early ripening varieties at lower risk

RESTRICTED AND PROHIBITED PRACTICES

- Reference the Yellow List for accepted insecticidal controls
- Thiamethoxam, dinotefuran applied via drip irrigation
- Thiamethoxam and dinotefuran cannot be applied when bees are present or if flowering plants are within the drip zone

Leafhopper adults and nymphs pierce leaf cells and suck out the contents. Each feeding puncture leaves a white spot. As injury increases, photosynthetic activity declines; heavily damaged leaves turn yellow and brown and fall off the vine in severe cases.

Grape leafhoppers overwinter as non-breeding adults in plant debris and leaf litter in protected locations. Adults emerge from overwintering sites in March and feed on annual weeds on the vineyard floor. They move on to grape foliage after budburst, and females begin laying eggs usually in late April. Egg-laying continues for about 6 weeks.

The first generation of nymphs feeds primarily on basal leaves from May to June and produces new generation adults in July. The second generation of nymphs appears later in the month (feeding on outer canopy leaves) and produces the second adult generation in the latter half of August and September. These adults form the overwintering population.

The relationship between leafhopper populations and economic damage to wine and juice grapes is not well understood in the Pacific Northwest, but it is clear that vines can tolerate quite large populations before suffering economic loss. This is particularly true for spring populations of overwintered adults and first generation nymphs, which confine their feeding activity to the basal six to eight leaves.

The second generation of nymphs moves on to outer canopy leaves. Their numbers should be assessed using leaf counts. An average of more than 20 nymphs per leaf on outer canopy leaves, with no evidence of egg parasitism, is likely to require treatment.
Mealybug and Grapevine Leafroll

REGION 2

YELLOW LIST

Mealybugs are insect pests that can be a vector for some types of leafroll virus. Source clean plant material. Natural parasites and predators can provide control, including a lady beetle called the “mealybug destroyer.” Listed for Region 2 only.

The grape mealybug has a soft, oval, flattened, distinctly segmented body. The adult female is 0.25 to 0.5 inch long, pink to dark purple, and with a white, mealy, wax secretion. Long caudal filaments along the lateral margin of the body become progressively shorter toward the head. Eggs are yellow to orange and laid in cottony egg sacs. Crawlers that hatch from them are tiny (0.06 to 0.12 inch long), yellow to brown.

Males and females are similar in early instar stages. Males pass through three nymphal instars, then form a cottony cocoon about 0.12 inch long in which the pupa is formed. All stages of the female are similar, varying in size only. The crawler stage of this pest is most mobile. Grape mealybug contaminates fruit with cottony egg clusters, eggs, immature stages, adults, and honeydew. A black fungus (sooty mold) may grow on the honeydew. The grape mealybug is a vector of grapevine leafroll virus and can lead to significant spread of the virus within and across vineyards when both the pest and virus are present.

Grape mealybugs overwinter on the cordon section of vines, under the loose bark, in all life stages and these are the preferred feeding sites, making them inconspicuous to growers. When populations are large enough preventing establishment in mentioned preferred feeding sites all stages, but especially crawlers, move to new growth to feed. Eggs can be laid on all plant parts during the season.

One to two generations of mealybugs can develop in vineyards in the Pacific Northwest. Generations may overlap during the latter part of the season making control more difficult. As populations build, migrating mealybug populations may move to clusters during July and August, causing direct crop damage. Some females maturing in mid to late August lay their eggs on fruit and leaves, while most return to old wood to overwinter and lay eggs that will survive to the next season.

Control thresholds have not been defined. Early spring populations are usually small and inconspicuous. The number of late season migrating mealybugs increase the likelihood of contamination with vine leafroll virus and warrant control.

Please note: Gill’s mealybug has been identified in Southern Oregon. See the ODA Pest Alert.

CULTURAL AND BIOLOGICAL CONTROL MEASURES

- Purchase insect and virus-free, clean, certified (if available) plants
- Crew and equipment movement should be managed to prevent disease migration. Begin work in a non-infested block and work toward infested blocks.
- Manage canopy density for coverage
- Remove virus-infected vines. If removal of vines is not an option, the grower must present a quarantine and re-planting plan to the inspector.

MONITORING AND DECISION-MAKING

- Determine leafroll virus status in vineyard by scouting followed by lab verification of virus type
- Scout vineyard for mealybug

RESTRICTED AND PROHIBITED PRACTICES

- Reference the Yellow List for accepted insecticidal controls
- Thiamethoxam, dinotefuran applied via drip irrigation
- Thiamethoxam and dinotefuran cannot be applied when bees are present or if flowering plants are within the drip zone
2019 LIVE Green List

This is a compilation of management options for vineyards in the Pacific Northwest, supporting integrated pest management (IPM) and compliance with LIVE standards. LIVE standards adapt IPM principles to Northwest winegrowing regions and weigh impacts to humans and the environment. Contact admin@livecertified.org with questions.

REGION 2

YELLOW LIST

Lecanium Scale Insects

<table>
<thead>
<tr>
<th>CULTURAL AND BIOLOGICAL CONTROL MEASURES</th>
<th>MONITORING AND DECISION-MAKING</th>
<th>RESTRICTED AND PROHIBITED PRACTICES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Promote beneficial insect populations, particularly parasitic wasps</td>
<td>• Determine leafroll virus status in vineyard by scouting followed by lab verification</td>
<td>• Reference the Yellow List for accepted insecticidal controls</td>
</tr>
<tr>
<td>• Affected plant material may be removed at pruning if infestation has not reached main framework of vine</td>
<td>• Scout vineyard for scale</td>
<td></td>
</tr>
</tbody>
</table>

Lecanium Scale Insects

Infestation is limited to parts of the vine removed during pruning. Parasitic wasps are a natural enemy. Listed for Region 2 only. See below for detail.

This scale assumes many sizes, shapes, and colors. The typical form is almost hemispherical, shiny brown, smooth, and approximately 0.12 to 0.19 inch long. Eggs are oval and pearly white. The young vary from yellow to pale brown.

Adult females may be found on leaves or bunches but mostly on shoots of current growth or on 1- to 3-year-old wood. Males have not been observed. Females lay eggs under their bodies. As the female dies, the body shrinks and an egg-filled pocket is formed. As more eggs are laid, the walls of the scale's body becomes hard and, after death, brittle. Young overwinter in a juvenile state on 1- to 3-year-old wood. They mature in late spring, when eggs are produced in great abundance. Hatching continues during early to midsummer. There is one brood per year.

Lecanium scale insects are generally found on 1-3 year old wood. Control measures may not be necessary if infestation is limited to parts of the vine removed during pruning. Parasitic wasps are a natural enemy. Listed for Region 2 only. See below for detail.

Lecanium scale insects are generally found on 1-3 year old wood. Control measures may not be necessary if infestation is limited to parts of the vine removed during pruning. Parasitic wasps are a natural enemy. Listed for Region 2 only. See below for detail.
Phylloxera

REGION 1

Phylloxera is an insect pest that damages vines. Resistant rootstock is available. Listed for Region 1 only.

A small, aphid-like insect that feeds on roots of grapevines causing stunted growth, reduced vigor, and vine death of own-rooted Vitis vinifera. Depending on the vineyard location and climate, death can occur within 3-10 years with mortality being quicker in drier climates where vines experience more nutrient and water stress. Phylloxera has been confirmed in all winegrape-growing regions of Oregon with the exception of the Milton-Freewater area of eastern Oregon. Washington has had only limited areas of confirmed phylloxera. Regular sampling is encouraged to determine presence in areas thought to be phylloxera-free.

Most adults are wingless females, generally oval; egg layers are more pear-shaped. They vary from 0.03 to 0.04 inch long. Adults vary in color according to food supply: on fresh, vigorous roots they are yellow, yellowish green, olive green, or light brown; on weakened roots, they are brown or orange.

CULTURAL AND BIOLOGICAL CONTROL MEASURES

- Plant on phylloxera-resistant rootstock where conditions are appropriate
- Practice good sanitation when moving equipment in and out of infested area
- Enhance fertility in infested area to encourage root re-growth and prolonged vine life
- Replant when economically feasible

MONITORING AND DECISION-MAKING

- Monitor for symptoms and or movement of pest annually

RESTRICTED AND PROHIBITED PRACTICES

- LIVE does not have chemical controls listed for this pest

Sampling for phylloxera should be conducted during late summer and early fall when populations are at their highest. Dig 12-18" below the soil surface about 12" away from the vine trunk. Sample both soil and roots. Use a stereoscope to view the roots and search for root swellings (nodosites and tuberosites), adults and eggs. If you do not have adequate magnification, contact your local Extension agent or crop consultant for assistance in identifying the insect. Only one phylloxera is needed to create a problem in the vineyard; populations can increase and spread over time and attack grapevine roots.
2019 LIVE Green List

This is a compilation of management options for vineyards in the Pacific Northwest, supporting integrated pest management (IPM) and compliance with LIVE standards. LIVE standards adapt IPM principles to Northwest winegrowing regions and weigh impacts to humans and the environment. Contact admin@livecertified.org with questions.

REGION 1

REGION 2

YELLOW LIST

MONITORING AND DECISION-MAKING

- Document vole damage and severity of burrow network. Voles populations spike on a four to seven year cycle, and therefore direct control may not be necessary every year. Low to moderate vole damage may be acceptable to avoid chemical control.

RESTRICTED AND PROHIBITED PRACTICES

- Reference the Yellow List for accepted controls

- Use of zinc phosphide must be discontinued immediately if any non-target organisms are affected. Especially vulnerable are Canadian geese, dogs, and deer.
Trunk diseases

Various members of several fungal families cause trunk diseases in grapevines, and multiple pathogens may be isolated from an affected vine. Symptoms are not sufficient to identify a particular cause. Trunk diseases should be considered a syndrome or disease complex.

Bot canker
Members of the Botryosphaeriaceae, including multiple species of the fungus Botryosphaeria, are known to cause a range of symptoms, which have also been referred to as excoriose or “Bot canker.” These fungi cause perennial cankers and enter vines through fresh injuries such as natural cracks, pruning wounds, or any large cut to cordon or trunks. Pruning wounds made early in the dormant period are much more susceptible than wounds made late in the dormant period.

Crown gall
Crown gall is caused by a bacterium and is most commonly found in regions with cold winters like southern Oregon and areas east of the Cascade Range. The bacterium survives for years in old galls, infected vines, and infected plant debris in the soil. It can enter the plant through wounds, such as grafting wounds, mechanical or cold damage, or pruning cuts. The bacteria overwinter in the roots and can re-populate aboveground portions in the spring.

Esca, young esca, and Petri disease
Esca (black measles) is considered a disease of older vines. Decline of young vines has been variously known as young vine decline, Petri disease and young esca. These fungi are considered endophytic, but have the ability to become severe pathogens as a result of poor cultural practices. Vines are predisposed to the pathogens by stress, in particular water stress. Vines derived from infected mother plants are considered a significant source of plants infected with young esca. Esca is considered to be the result of unprotected pruning wounds.

Eutypa
Infection occurs when airborne ascospores contact fresh pruning wounds during or immediately following rain. Pruning wounds become resistant to infection about 2 to 4 weeks after pruning. In general, pruning wounds made early in the dormant period are much more susceptible than wounds made late in the dormant period.

CULTURAL AND BIOLOGICAL CONTROL MEASURES

- Source clean plant material and confirm nursery practices—various preventative techniques must be performed by the nursery. Soak dormant cuttings 30 minutes in hot water.
- When planting, sort out vines of poor quality. Plant in spring or fall when water is not a limiting factor. Irrigate new plantings for a few years before switching to dryland production.
- Balance root and shoot growth. Using grow tubes and cropping several tons in the second year after planting has been associated with these diseases.
- Use a multiple trunk training system, which will allow for trunk replacement without losing an entire vine.
- Avoid any injury near the base of the vine. Avoid large pruning cuts when possible, and avoid pruning during and before wet weather. Prune later in the dormant period. When making large cuts during wet weather, leave a stub several inches long to be pruned off later during dry weather (sometimes referred to as double pruning).
- Sterilize pruning tools between vines with 10% Clorox (bleach, which also will oxidize your pruning equipment) or shellac thinner (70% ethyl alcohol).
- Remove diseased wood 4 to 6 inches below a canker, and train a new, healthy shoot into position. If the canker is below ground, remove and replace the vine.
- For crown gall, if the gall is high enough on the trunk, a sucker replacement may be brought up from well below the galled areas in nongrafted plants. Do not graft over to a new cultivar on vines that are exhibiting crown gall.
- In spring, when symptoms are evident, mark diseased vines for future removal.
- Remove diseased vines, including as much old root material as possible. Remove and destroy all large trunk or cordon pieces.
Grapevine Red Blotch Virus

Much like leafroll disease, leaves in red cultivars turn red in early fall primarily at the base of the shoots. Unlike leafroll, red blotch disease in red cultivars can sometimes show pink/red veins on the leaf undersides and no rolling. In white cultivars leaf blades have marginal and interveinal chlorosis - regions of which may become necrotic. Symptom severity can be variable from year to year. Red blotch disease symptoms are not diagnostic. Vines should be tested to confirm GRBV infection.

Red blotch disease consistently reduces sugar accumulation, increases malic acid and less consistently increases pH and titratable acidity. Cluster weight may be reduced and the effect on yield varies by cultivar and growing conditions. Pruning weight has also been shown to be reduced by 5% in infected Cabernet franc vines.

Based on the wide host and geographic distribution of GRBV and the fact that the virus is transmitted by grafting, it is likely that spread has primarily occurred through propagation material. Also, an increased incidence of GRBV over time in vineyards suggested the existence of a vector. At least one insect vector, the three-cornered alfalfa hopper Spissistilus festinus (Hemiptera: Membracidae), has recently been confirmed to transmit GRBV to potted vines in lab studies.

Like other viruses, once it is present in a vineyard there is no cure. GRBaV can be detected by a PCR test. Several labs offer a test for GRBaV.

CULTURAL AND BIOLOGICAL CONTROL MEASURES

- Source clean plant material and confirm nursery practices—various preventative techniques must be performed by the nursery.
Vertebrates (deer, birds, etc.)

Wildlife rules and regulations vary state to state. The resources listed here are not necessarily appropriate for every vineyard—please check with your state wildlife agency. In addition, please note that LIVE does not allow pesticidal control of these pests in vineyards.

Deer
Common methods for controlling deer are exclusion and the use of non-pesticidal repellent products.

- Deer control in vineyards (University of Kentucky)
- Late season bird and deer control (Penn State)
- Deer IPM (UC Davis)

Birds
Common methods for controlling bird damage are exclusion and "scare" tactics.

- Attracting birds of prey (WSU)
- Attracting and retaining birds of prey (NRCS)
- Bird control in vineyards (Oregon Wine Board)
- Birds on tree fruits and vines (UC Davis)
- Building birdhouses to attract insect-eating birds (UI)
- Late season bird and deer control (Penn State)

Rodents
Please refer to non-chemical control methods listed for voles.

If your vineyard is experiencing economic damage from a pest that you cannot resolve with the tools listed in LIVE’s Green and Yellow Lists, please contact your regional technical committee chair or email staff: admin@livecertified.org
2019 LIVE Green List

This is a compilation of management options for vineyards in the Pacific Northwest, supporting integrated pest management (IPM) and compliance with LIVE standards. LIVE standards adapt IPM principles to Northwest winegrowing regions and weigh impacts to humans and the environment. Contact admin@livecertified.org with questions.

REGION 2
YELLOW LIST

<table>
<thead>
<tr>
<th>Flea Beetle</th>
</tr>
</thead>
<tbody>
<tr>
<td>The grape flea beetle is an occasional pest, but a serious one when there is an outbreak in a young vineyard. Its feeding is most consequential at bud swell. At this time, the adults emerge from overwintering sites and feed on the grape buds by chewing holes on the ends and sides, destroying the bud. Subsequent feeding on foliage by larvae and adults is usually not consequential but can cause serious skeletonizing, or a lacy appearance, in young vines. Adults emerge from overwintering sites, feed, then lay eggs in the bark of the vine. Larvae hatch and crawl to developing grape leaves, and feed primarily on the upper surface. Adults continue to feed on the foliage.</td>
</tr>
</tbody>
</table>

| Fully developed larvae drop to the soil, burrow one inch or less, and pupate. Adults later emerge. There is one generation per year. |

CULTURAL AND BIOLOGICAL CONTROL MEASURES

- Cultivating between rows may contribute to control of the flea beetle pupae by exposing the delicate pupae to desiccation and death. However, cultivating does not eliminate emerging beetles from under the trellis and adjoining brush/woodland/wasteland area. In vineyards with cover crops, it can be advantageous to delay mowing the cover so that adults and larvae are less likely to migrate to the vines. Brush and woodlots located near a vineyard can be a continual source of flea beetles and these areas should be cleaned up if possible. This will help to reduce sites for beetles to overwinter. Cultivation of open areas between rows and around the vineyard can reduce the number of newly emerging adults. However, one cannot depend on this practice to control flea beetles.

MONITORING AND DECISION-MAKING

- Bud damage caused by grape flea beetle is most often concentrated in vineyard borders. Scouting for flea beetles should be conducted along the vineyard perimeter. Bud damage of 4% or more warrants treatment.

- Flea beetle damage in mature vineyards is more sporadic than cutworm damage.

- Most occurrences of grape flea beetle in mature vineyards do not constitute economic risk, or require chemical control.

- Young vines can be devastated by grape flea beetle feeding on buds and foliage, warranting chemical control

- If a vineyard was infested with abundant populations of flea beetle this year, it should be monitored closely next spring.

RESTRICTED AND PROHIBITED PRACTICES

- Reference the Yellow List for accepted insecticidal controls (Spinosad)
This is a compilation of management options for vineyards in the Pacific Northwest, supporting integrated pest management (IPM) and compliance with LIVE standards. LIVE standards adapt IPM principles to Northwest winegrowing regions and weigh impacts to humans and the environment. Contact admin@livecertified.org with questions.

Precipitation Data

Region 1 refers to viticultural areas with a cooler, wetter growing season. This includes areas west of the Cascades and above the North Umpqua River in Oregon—e.g., the northern Umpqua Valley, the Willamette Valley, the western Columbia Gorge, and Puget Sound.
Region 2 refers to areas with a warmer, drier growing season. This includes areas east of the Cascades and below the North Umpqua in Oregon—e.g., the central and southern Umpqua Valley, the Rogue Valley, the Columbia Valley, and the Snake River Valley.
2019 LIVE Green List

How LIVE and Salmon-Safe Work Together

Salmon-Safe is dedicated to protecting watersheds and aquatic life from the impacts of agriculture and urban development. In 2001, LIVE partnered with Salmon-Safe to develop and certify to whole-farm standards. For those members who have additional crops, landscaping, or other managed land beyond the borders of the vineyard, our inspectors will verify that Salmon-Safe standards are being met. For the most current Salmon-Safe standards, visit www.salmonsafe.org.

The Salmon-Safe List of High Hazard Pesticides (right) is used to flag management practices that could potentially harm aquatic life and/or leach to groundwater. Chemical controls that appear on the LIVE Yellow List of Approved Pesticides have been examined through the lens of this list, and application restrictions have been written where appropriate.

A farm using any of the pesticides indicated as “High Hazard” may be certified only if written documentation is provided that demonstrates a clear need for use of the pesticide, that no safer alternatives exist and that the method of application (such as timing, location and amount used) represents a negligible hazard to water quality and fish habitat. Any variance must be approved in advance by Salmon-Safe. For information about the variance process, fees, or to request a variance form, please contact info@salmonsafe.org.
Ecological Infrastructures

Ecological infrastructures are areas of the farm that are either left wild or managed for the express purpose of promoting biodiversity, wildlife corridors, landscape level continuity, and/or habitat for beneficial fauna.

Cover crop as ecological infrastructure
It is frequently asked if cover crop can be used as ecological infrastructure. The answer to this depends on how it is managed. Permanently flowering or native cover may be used. Alternate mowing at long intervals is allowed to manage competition with crop. However tilting under is not allowed for this area to qualify as infrastructure. Spading every other row every fourth year is allowed – this will result in four distinct age groups of flora within the ecological infrastructure, thus maximizing its ecological quality.

Mowing heights and mower types
Mulching mowers cause the most damage to beneficial fauna and should not be used in ecological infrastructures. Traditional horizontal mowers are relatively harmless. If bee activity is expected, mowing before 7am or after 6pm will mitigate damages to their populations.

Fauna can escape if mower is set to higher than 4-5 inches. Alternate mowing/leaving patterns of wildflower patches is necessary to maintain food sources for beneficial fauna.

Distances
Crawling, flying, or windborne beneficial insects have a limited operational distance of 30-150 feet. Although as of yet unproven, there is a hypothesis that planting pollen and nectar sources such as open faced roses as ‘stepping stones’ between infrastructures may help these insects to extend their predation range.

Buffer zones and pesticide drift
To reduce drift, please observe the following recommendations:
• No pesticide application if wind speed exceeds 10mph.
• If possible no application if temperature exceeds 77°F and relative humidity is below 50% (ideally <70%)
• Avoid droplet sizes that are too small
• Nozzles as close to target as possible
• Near ecological infrastructure: do not treat the field edge or sensitive off-crop areas (minimum distance of 10ft) and if possible reduce delivery pressure and sprayer speed

Stinging nettle
Stinging nettle, while commonly seen as a weed/nuisance, can host more than 100 insect species, including many beneficials. Butterfly and aphid species are attracted to nettle, as are the egg parasitoids of grape leafhopper. Colonization of nettle patches by beneficials occurs extremely rapidly (within 3 years).

Further recommendations
Please see the next page for ideas of ecological infrastructure types and management practices.
Ecological Infrastructures (continued)

FOR VINEYARDS

<table>
<thead>
<tr>
<th>Infrastructure</th>
<th>Management Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low intensity grassland</td>
<td>No fertilizer or pesticides except spot treatment of problem weeds with LIVE-approved herbicide. High mowing once per year allowed.</td>
</tr>
<tr>
<td>Wetlands</td>
<td>No fertilizers or pesticides. High mowing once per year to once per three years allowed.</td>
</tr>
<tr>
<td>Conservation headland</td>
<td>No fertilizer or pesticides except spot treatment of problem weeds with LIVE-approved herbicide. No mowing allowed.</td>
</tr>
<tr>
<td>Wildflower strips</td>
<td>No fertilizer, pesticides, or mowing</td>
</tr>
<tr>
<td>Rotational fallows</td>
<td>No fertilizer, pesticides, or mowing</td>
</tr>
<tr>
<td>Unmanaged hedges and woodland patches</td>
<td>May be trimmed every 2-3 years (low hedges) every 5-10 years (tall hedges/trees) or thinned (woodland patches). Grass strips of at least 3m wide that transition from hedge to cropped area receives no fertilizer or pesticides, and may be mowed once per year, high and late, if at all. Grass strips cannot be double counted as buffer area and ECA.</td>
</tr>
<tr>
<td>Non-agricultural high-stem fruit trees/orchard</td>
<td>No fertilizer or pesticides. Old trees with dead branches and cavities are left alone. Minimum 30 trees, ideally 300+ trees. May be pruned periodically (every 2-5 years)</td>
</tr>
<tr>
<td>Low intensity pasture or pasture land in</td>
<td>No fertilizer or pesticides</td>
</tr>
<tr>
<td>Ditches and ponds</td>
<td>Ponds are not used for irrigation</td>
</tr>
<tr>
<td>Stone heaps, embankments and stone</td>
<td>No fertilizer or pesticides</td>
</tr>
<tr>
<td>Unpaved farm trails</td>
<td>No fertilizer or pesticides</td>
</tr>
<tr>
<td>Wildlife corridors</td>
<td>No fertilizer or pesticides</td>
</tr>
</tbody>
</table>

FOR FRUIT FARMS

<table>
<thead>
<tr>
<th>Infrastructure</th>
<th>Management Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botanically rich alleyways</td>
<td>Alternate mowing regime allowed</td>
</tr>
<tr>
<td>Intertree-strips with cover plants</td>
<td>No residual herbicides allowed</td>
</tr>
<tr>
<td>Wildflower strips</td>
<td>No fertilizer or pesticides. Ideally 10% + of orchard surface. Superficial hoeing allowed to reduce competitive grasses and to enhance annual broadleaf plants.</td>
</tr>
<tr>
<td>Low intensity grassland</td>
<td>No fertilizer or pesticides. Maximum of two cuts per year, the first occurring after plants bloomed and seeded.</td>
</tr>
<tr>
<td>Pioneer plants in wild areas</td>
<td>No fertilizer or pesticides. May be high-mowed every 2-3 years. Stone heaps should be piled up periodically and growing shrubs removed</td>
</tr>
<tr>
<td>Hedges and woodland patches</td>
<td>See vineyard section</td>
</tr>
<tr>
<td>Single trees and non-agricultural high stem orchards with meadows</td>
<td>See vineyard section</td>
</tr>
</tbody>
</table>
Livestock Unit Conversion Chart

To calculate your total Livestock Units (LU), multiply the quantity of each animal by the LU for that animal and then add them up.

Example: You have 5 sheep, 2 pigs and 3 horses

\[(5 \text{ sheep } \times 0.15 \text{ LU}) + (2 \text{ pigs } \times 0.25 \text{ LU}) + (3 \text{ horses } \times 0.80 \text{ LU}) = 3.65 \text{ Livestock Units}\]

References

Vole inset description taken from Journal of Pesticide Reform.

2019 LIVE Yellow List

Controls for Botrytis cinerea

Botrytis cinerea is a fungus that causes Botrytis bunch rot. Non-chemical control includes preventing excess vigor and maintaining an open canopy. See Green List for detail.

<table>
<thead>
<tr>
<th>ACTIVE INGREDIENT</th>
<th>COMMON TRADE NAMES</th>
<th>RESTRICTIONS</th>
<th>GREEN LIST</th>
<th>REGION 1</th>
<th>REGION 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fenhexamid</td>
<td>Elevate</td>
<td>Labeled for botrytis with suppression effects for powdery mildew</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyprodinil</td>
<td>Vangard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrimethanil</td>
<td>Scala</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difenoconazole/Cyprodinil*</td>
<td>Inspire Super</td>
<td>Grower should limit the use of FRAC 3 products to one (1) application per season total and tank mix with a compatible multi-site fungicide of a different MOA. Should not apply during bloom.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus - All OMRI listed strains</td>
<td>Sonata, Serenade, Double Nickle, etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reynoutria spp</td>
<td>Regalia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ipodione*</td>
<td>Rovral</td>
<td>Must not be used within 100 feet of a waterway (toxic to aquatic invertebrates)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azoxystrobin*</td>
<td>Abound</td>
<td>Grower should limit the use of FRAC 11 products to one (1) application per season total and tank mix with a compatible multi-site fungicide of a different MOA. Should not apply during bloom.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trifloxystrobin*</td>
<td>Flint</td>
<td>Grower should limit the use of FRAC 11 products to one (1) application per season total and tank mix with a compatible multi-site fungicide of a different MOA. Should not apply during bloom.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boscalid</td>
<td>Endura</td>
<td>For controls containing boscalid, limit of one (1) application per season for botrytis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptomyces</td>
<td>Actinovate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IMPORTANT FOR BOTRYTIS AND POWDERY MILDEW: Any products other than biofungicide or sulfur must be rotated by mode of action (MOA) between consecutive applications. This decreases the likelihood of fungal resistance to available products.

Materials outlined in red are under review for 2020 due either to unacceptable risk factors or for resistance management purposes. Other materials are evaluated regularly to provide growers with adequate options for control. Please plan accordingly. See your extension agent for further resistance management information.
2019 LIVE Yellow List

This is a list of approved pesticide controls for the LIVE vineyard certification program. Go to the Green List first—these controls are permitted only for key pressure occurrences not adequately managed with Green List measures. Section headers note target pests and applicable regions, and provide links to the corresponding Green List entry and additional pesticide data. Pesticides are listed by active ingredient with important LIVE restrictions noted. Contact admin@livecertified.org with questions.

Controls for Powdery Mildew

Powdery mildew is a fungal disease. Non-chemical control includes preventing excess vigor, timely suckering, and maintaining an open canopy. Rotate controls by mode of action for resistance management. See Green List for detail.

Important for Botrytis and Powdery Mildew

Any products other than biofungicide or sulfur must be rotated by mode of action (MOA) between consecutive applications. This decreases the likelihood of fungal resistance to available products.

<table>
<thead>
<tr>
<th>Active Ingredient</th>
<th>Common Trade Names</th>
<th>Restrictions</th>
<th>Green</th>
<th>Region 1</th>
<th>Region 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reynoutria spp</td>
<td>Regalia</td>
<td>For powdery mildew, limit of three (3) applications from this chemical family per season</td>
<td>Green List</td>
<td>Region 1</td>
<td>Region 2</td>
</tr>
<tr>
<td>Metrafenone</td>
<td>Vivando</td>
<td>For powdery mildew, limit of three (3) applications from this chemical family per season</td>
<td>12</td>
<td>14</td>
<td>U8</td>
</tr>
<tr>
<td>Cyflufenamid</td>
<td>Torino</td>
<td>For powdery mildew, limit of two (2) applications from this chemical family per season</td>
<td>4</td>
<td>3</td>
<td>U6</td>
</tr>
<tr>
<td>Tebuconazole*</td>
<td>Tebucon</td>
<td>Grower should limit the use of FRAC 3 products to one (1) application per season total and tank mix with a compatible multi-site fungicide of a different MOA. Should not apply during bloom.</td>
<td>12</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Triflumizole*</td>
<td>Procure</td>
<td>Grower should limit the use of FRAC 3 products to one (1) application per season total and tank mix with a compatible multi-site fungicide of a different MOA. Should not apply during bloom.</td>
<td>24</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Myclobutanil*</td>
<td>Rally</td>
<td>Grower should limit the use of FRAC 3 products to one (1) application per season total and tank mix with a compatible multi-site fungicide of a different MOA. Should not apply during bloom.</td>
<td>24</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>Fenarimol*</td>
<td>Vintage</td>
<td>Grower should limit the use of FRAC 3 products to one (1) application per season total and tank mix with a compatible multi-site fungicide of a different MOA. Should not apply during bloom.</td>
<td>12</td>
<td>14</td>
<td>3, 9</td>
</tr>
<tr>
<td>Difenoconazole/Cyprodinil*</td>
<td>Inspire Super</td>
<td>Grower should limit the use of FRAC 3 products to one (1) application per season total and tank mix with a compatible multi-site fungicide of a different MOA. Should not apply during bloom.</td>
<td>12</td>
<td>14</td>
<td>3, 9</td>
</tr>
<tr>
<td>Kresoxim-methyl*</td>
<td>Sovran</td>
<td>Grower should limit the use of FRAC T1 products to one (1) application per season total and tank mix with a compatible multi-site fungicide of a different MOA. Should not apply during bloom.</td>
<td>12</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>Azoxystrobin*</td>
<td>Abound</td>
<td>Grower should limit the use of FRAC T1 products to one (1) application per season total and tank mix with a compatible multi-site fungicide of a different MOA. Should not apply during bloom.</td>
<td>12</td>
<td>14</td>
<td>11</td>
</tr>
</tbody>
</table>

Materials outlined in red are under review for 2020 due either to unacceptable risk factors or for resistance management purposes. Other materials are evaluated regularly to provide growers with adequate options for control. Please plan accordingly. See your extension agent for further resistance management information.

Fenarimol (Trade Name Vintage) is no longer registered for use or supported by the manufacturer.
Controls for Powdery Mildew (continued)

Powdery mildew is a fungal disease. Non-chemical control includes preventing excess vigor, timely suckering, and maintaining an open canopy. Rotate controls by mode of action for resistance management. See Green List for detail.

<table>
<thead>
<tr>
<th>Active Ingredient</th>
<th>Common Trade Names</th>
<th>Restrictions</th>
<th>REI (hours)</th>
<th>PHI (days)</th>
<th>MOA Code</th>
<th>Chemical Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trifloxystrobin*</td>
<td>Flint</td>
<td>Grower should limit the use of FRAC 11 products to one (1) application per season total and tank mix with a compatible multi-site fungicide of a different MOA. Should not apply during bloom.</td>
<td>12</td>
<td>14</td>
<td>11</td>
<td>Strobilurines</td>
</tr>
<tr>
<td>Quinoxyfen</td>
<td>Quintec</td>
<td>For powdery mildew, limit of three (3) applications from this chemical family per season</td>
<td>12</td>
<td>14</td>
<td>13</td>
<td>Quinoline</td>
</tr>
<tr>
<td>Streptomyces</td>
<td>Actinovate</td>
<td></td>
<td>1</td>
<td>0</td>
<td></td>
<td>Biological</td>
</tr>
<tr>
<td>Bacillus - All OMRI listed strains</td>
<td>Sonata, Serenade, Double Nickle, etc.</td>
<td></td>
<td>4</td>
<td>0</td>
<td></td>
<td>Biological</td>
</tr>
<tr>
<td>Potassium salts of fatty acids</td>
<td>M-Pede</td>
<td>Must not be applied when pollinators are present</td>
<td>12</td>
<td>0</td>
<td></td>
<td>Soap</td>
</tr>
<tr>
<td>Paraffinic Oil, Mineral Oil</td>
<td>JMS Stylet Oil; Pure Spray Green</td>
<td>Must not be applied when pollinators are present</td>
<td>4</td>
<td>0</td>
<td></td>
<td>Oils</td>
</tr>
<tr>
<td>Potassium Bicarbonate</td>
<td>Armicarb, Kaligreen</td>
<td></td>
<td>4</td>
<td>1</td>
<td></td>
<td>Bicarbonates</td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>Serenade, Serenade MAX</td>
<td>For powdery mildew - per treatment limit of 5 lb/acre of active ingredient. Total limit of 35 lb/acre per year. Per treatment limit may be exceeded up to label limit if conditions warrant and justified by scouting records, only if recommended by regional IPM advisor and/or extension. It is strongly discouraged to approach the annual limit except in years with severe mildew conditions. Overuse of sulfur is harmful to beneficial mites. See mite sections for mite application restrictions.</td>
<td>4</td>
<td>0</td>
<td></td>
<td>Biological</td>
</tr>
<tr>
<td>Micronized Sulfur</td>
<td>Multiple Names</td>
<td>*Materials outlined in red are under review for 2020 due either to unacceptable risk factors or for resistance management purposes. Other materials are evaluated regularly to provide growers with adequate options for control. Please plan accordingly. See your extension agent for further resistance management information.</td>
<td>24</td>
<td>0</td>
<td>M (Multi-site)</td>
<td>Inorganic</td>
</tr>
</tbody>
</table>
This is a list of approved pesticide controls for the LIVE vineyard certification program. Go to the Green List first—these controls are permitted only for key pressure occurrences not adequately managed with Green List measures. Section headers note target pests and applicable regions, and provide links to the corresponding Green List entry and additional pesticide data. Pesticides are listed by active ingredient with important LIVE restrictions noted. Contact admin@livecertified.org with questions.

2019 LIVE Yellow List

Controls for **Weeds**

Should only be used to supplement non-chemical methods including planting competitive cover crop, mechanical cultivation, and in-row mulch. A weed survey is an important monitoring tool. See Green List for detail.

<table>
<thead>
<tr>
<th>ACTIVE INGREDIENT</th>
<th>COMMON TRADE NAMES</th>
<th>RESTRICTIONS</th>
<th>GREEN LIST</th>
<th>REGION 1</th>
<th>REGION 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glyphosate</td>
<td>Roundup</td>
<td>Grower should restrict use to one (1) or fewer applications for the growing season in LIVE Region 1, or two (2) or fewer applications in LIVE Region 2, not including noxious weed control and fenceline vegetation management. Must be rotated with other methods of weed control.</td>
<td>12</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>Glufosinate</td>
<td>Rely</td>
<td></td>
<td>12</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>Pelargonic Acid</td>
<td>Scythe</td>
<td></td>
<td>12</td>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td>Indaziflam</td>
<td>Alion</td>
<td>Maximum of one (1) application per year. For use near mature vines only (check label for details on this and other restrictions). This material may only be used in conjunction with a completed weed survey that shows the presence of labeled weeds on the farm.</td>
<td>7</td>
<td>14</td>
<td>29</td>
</tr>
<tr>
<td>Carfentrazone-ethyl</td>
<td>AIM</td>
<td>Application must be made in a targeted manner for sucker control only. Applications are prohibited within 300 feet of streams or drainages.</td>
<td>24</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>Rimsulfuron</td>
<td>Matrix</td>
<td>This material may only be used in conjunction with a completed weed survey that shows the presence of labeled weeds on the farm.</td>
<td>4</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Flumioxazin</td>
<td>Chateau</td>
<td>This material may only be used in conjunction with a completed weed survey that shows the presence of labeled weeds on the farm. Please note pre-harvest interval (PHI).</td>
<td>12</td>
<td>60</td>
<td>14</td>
</tr>
<tr>
<td>Caprylic acid, capric acid</td>
<td>Suppress</td>
<td></td>
<td>24</td>
<td>0</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REI (hours)</th>
<th>PHI (days)</th>
<th>MOA CODE</th>
<th>CHEMICAL FAMILY</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>14</td>
<td>9</td>
<td>Aliphatic Acid</td>
</tr>
<tr>
<td>12</td>
<td>14</td>
<td>10</td>
<td>Aliphatic Acid</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>N/A</td>
<td>Botanical/Fatty Acid</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>29</td>
<td>Alkylazine</td>
</tr>
<tr>
<td>24</td>
<td>7</td>
<td>14</td>
<td>Triazolinone</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>1</td>
<td>Sulfonylurea</td>
</tr>
<tr>
<td>12</td>
<td>60</td>
<td>14</td>
<td>N-phenylphthalimide</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
<td>N/A</td>
<td>Botanical/Fatty Acid</td>
</tr>
</tbody>
</table>
This is a list of approved pesticide controls for the LIVE vineyard certification program. Go to the Green List first—these controls are permitted only for key pressure occurrences not adequately managed with Green List measures. Section headers note target pests and applicable regions, and provide links to the corresponding Green List entry and additional pesticide data. Pesticides are listed by active ingredient with important LIVE restrictions noted. Contact admin@livecertified.org with questions.

Controls for **Rust Mite, Blister Mite, and Bud Mite**

Grape rust mite, blister/Erineum mite, and other eriophyid mites are microscopic pests that overwinter in vineyards—careful monitoring is essential, and dormant buds can be examined for mite presence. See Green List for detail.

<table>
<thead>
<tr>
<th>Active Ingredient</th>
<th>Common Trade Names</th>
<th>Restrictions</th>
<th>REI (hours)</th>
<th>PHI (days)</th>
<th>MOA Code</th>
<th>Chemical Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfur</td>
<td>Multiple names</td>
<td>Two (2) 5lb sprays when conditions dictate</td>
<td>24</td>
<td>0</td>
<td>M (Multi-site)</td>
<td>Inorganic</td>
</tr>
<tr>
<td>Spirodiclofen</td>
<td>Envidor</td>
<td>Must not be used within 100 feet of open streams or ditches. If used for rust mite, available to vineyards ONLY in Oregon under 2(ee) exemption.</td>
<td>12</td>
<td>14</td>
<td>23</td>
<td>Tetronic/Tetramic Acid</td>
</tr>
<tr>
<td>Paraffinic Oil, Mineral Oil</td>
<td>JMS Stylet Oil, Pure Spray Green</td>
<td>Must not be applied when pollinators are present</td>
<td>4</td>
<td>0</td>
<td>Biofungicide</td>
<td>Oils</td>
</tr>
<tr>
<td>Chromobacterium subsugae</td>
<td>Grandevo</td>
<td>Must not be used within 75 feet of aquatic habitats</td>
<td>4</td>
<td>0</td>
<td>Unknown</td>
<td>Biological</td>
</tr>
</tbody>
</table>

Materials outlined in red are under review for 2020 due either to unacceptable risk factors or for resistance management purposes. Other materials are evaluated regularly to provide growers with adequate options for control. Please plan accordingly. See your extension agent for further resistance management information.
2019 LIVE Yellow List

This is a list of approved pesticide controls for the LIVE vineyard certification program. Go to the Green List first—these controls are permitted only for key pressure occurrences not adequately managed with Green List measures. Section headers note target pests and applicable regions, and provide links to the corresponding Green List entry and additional pesticide data. Pesticides are listed by active ingredient with important LIVE restrictions noted. Contact admin@livecertified.org with questions.

Controls for **Spider Mite** (Pacific, Two-spotted, Willamette)

Spider mites are microscopic pests that overwinter in vineyards. Non-chemical control includes promotion of vine health and predatory mites, and dust abatement. Careful monitoring is essential. Targeted spot spraying is preferred. **Listed for Region 2 only.** See Green List for detail.

<table>
<thead>
<tr>
<th>ACTIVE INGREDIENT</th>
<th>COMMON TRADE NAMES</th>
<th>RESTRICTIONS</th>
<th>REI (hours)</th>
<th>PHI (days)</th>
<th>MOA CODE</th>
<th>CHEMICAL FAMILY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromobacterium subsugae</td>
<td>Grandevo</td>
<td>Must not be used within 75 feet of aquatic habitats</td>
<td>4</td>
<td>0</td>
<td>Unknown</td>
<td>Biological</td>
</tr>
<tr>
<td>Spirodiclofen</td>
<td>Envidor</td>
<td>Must not be used within 100 feet of open streams or ditches. If used for rust mite, available to vineyards ONLY in Oregon under 2(ee) exemption.</td>
<td>12</td>
<td>14</td>
<td>23</td>
<td>Tetronic/Tetramic Acid</td>
</tr>
<tr>
<td>Bifenazate</td>
<td>Acramite</td>
<td>Limit to one (1) application per year</td>
<td>12</td>
<td>14</td>
<td>25</td>
<td>Hydrazine carboxylate</td>
</tr>
<tr>
<td>Etoxazole</td>
<td>Zeal</td>
<td>May not be used within 100 feet of open streams or ditches</td>
<td>12</td>
<td>14</td>
<td>10B</td>
<td>Diphenyl oxazoline</td>
</tr>
<tr>
<td>Acequinocyl</td>
<td>Kanemite</td>
<td>May not be used within 100 feet of open streams or ditches</td>
<td>12</td>
<td>7</td>
<td>20B</td>
<td>Napthoquinone Derivatives</td>
</tr>
<tr>
<td>Clofentezine</td>
<td>Apollo</td>
<td></td>
<td>12</td>
<td>21</td>
<td>10A</td>
<td>Tetrazines</td>
</tr>
</tbody>
</table>
This is a list of approved pesticide controls for the LIVE vineyard certification program. Go to the Green List first—these controls are permitted only for key pressure occurrences not adequately managed with Green List measures. Section headers note target pests and applicable regions, and provide links to the corresponding Green List entry and additional pesticide data. Pesticides are listed by active ingredient with important LIVE restrictions noted. Contact admin@livecertified.org with questions.

Controls for Cutworm

Cutworms are caterpillars and identification is important. Most damage is caused by climbing cutworms. Non-chemical control includes parasitic wasps and predatory insects, and cultivation timing. **Listed for Region 2 only. See Green List for detail.**

<table>
<thead>
<tr>
<th>Active Ingredient</th>
<th>Common Trade Names</th>
<th>Restrictions</th>
<th>REI (hours)</th>
<th>PHI (days)</th>
<th>MOA Code</th>
<th>Chemical Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinosad</td>
<td>Success</td>
<td>Maximum of one (1) application per growing season. Time application to minimize risk of drift and allow for a buffer of at least 3 hours (preferably more) prior to pollinator activity.</td>
<td>4</td>
<td>7</td>
<td>5</td>
<td>Microbial</td>
</tr>
<tr>
<td>Bacillus thuringiensis (BT)</td>
<td>Javelin</td>
<td>Maximum of one (1) application per growing season.</td>
<td>4</td>
<td>0</td>
<td>11B2</td>
<td>Biological</td>
</tr>
<tr>
<td>Bifenthrin</td>
<td>Bifenture, Brigade</td>
<td>Maximum of one (1) application per growing season. Pyrethroid sprays on vine canopy and strip spray are prohibited. Spot treat to trunk base only. May not be used within 100 feet of a waterway.</td>
<td>12</td>
<td>30</td>
<td>3</td>
<td>Pyrethrin</td>
</tr>
</tbody>
</table>

Controls for Thrips

Thrips are small insects present in vineyards as wingless nymphs and winged adults, with some natural predators. Not all occurrences constitute economic risk—damage can be minor and cosmetic. **Listed for Region 2 only. See Green List for detail.**

<table>
<thead>
<tr>
<th>Active Ingredient</th>
<th>Common Trade Names</th>
<th>Restrictions</th>
<th>REI (hours)</th>
<th>PHI (days)</th>
<th>MOA Code</th>
<th>Chemical Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinosad</td>
<td>Success</td>
<td>Maximum of one (1) application per growing season. Time application to minimize risk of drift and allow for a buffer of at least 3 hours (preferably more) prior to pollinator activity.</td>
<td>4</td>
<td>7</td>
<td>5</td>
<td>Microbial</td>
</tr>
</tbody>
</table>
Controls for Leafhopper

Leafhoppers are insect pests that can damage leaves. Identifying the species and corresponding lifecycle is critical. Non-chemical control includes parasitic wasps, particularly Anagrus. **Listed for Region 2 only. See Green List for detail.**

<table>
<thead>
<tr>
<th>Active Ingredient</th>
<th>Common Trade Names</th>
<th>Restrictions</th>
<th>REI (hours)</th>
<th>PHI (days)</th>
<th>MOA Code</th>
<th>Chemical Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buprofezin</td>
<td>Applaud</td>
<td></td>
<td>12</td>
<td>7</td>
<td>16</td>
<td>Insect Growth Regulator</td>
</tr>
<tr>
<td>Potassium salts of fatty acids</td>
<td>M-Pede</td>
<td>Do not apply when pollinators are present</td>
<td>12</td>
<td>1</td>
<td>Biofungicide</td>
<td>Soap</td>
</tr>
<tr>
<td>Kaolin</td>
<td>Surround</td>
<td></td>
<td>4</td>
<td>1</td>
<td>Unknown</td>
<td>Inorganic Solid Silicate</td>
</tr>
<tr>
<td>Paraffinic Oil, Mineral Oil</td>
<td>JMS Stylet Oil; Pure Spray Green</td>
<td>Must not be applied when pollinators are present</td>
<td>4</td>
<td>0</td>
<td>Biofungicide</td>
<td>Oils</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>Platinum</td>
<td>Must not be used when bees are present and/or if flowering plants are within the drip zone. All LIVE Green List activities must be performed and documented prior to application. Chemistry may then be applied through drip irrigation. See LIVE Green List for details.</td>
<td>12</td>
<td>60</td>
<td>4A</td>
<td>Neonicotinoid</td>
</tr>
<tr>
<td>Dinotefuran</td>
<td>Venom</td>
<td>Must not be used when bees are present and/or if flowering plants are within the drip zone. All LIVE Green List activities must be performed and documented prior to application. Chemistry may then be applied through drip irrigation. See LIVE Green List for details.</td>
<td>12</td>
<td>SL</td>
<td>4A</td>
<td>Neonicotinoid</td>
</tr>
</tbody>
</table>
Mealybugs and Grapevine Leafroll

Mealybugs are insect pests that can be a vector for leafroll virus. Source clean plant material. Natural parasites and predators can provide control, including a lady beetle called the “mealybug destroyer.” Listed for Region 2 only. See Green List for detail.

<table>
<thead>
<tr>
<th>ACTIVE INGREDIENT</th>
<th>COMMON TRADE NAMES</th>
<th>RESTRICTIONS</th>
<th>REI (hours)</th>
<th>PHI (days)</th>
<th>MOA CODE</th>
<th>CHEMICAL FAMILY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spirotetramat</td>
<td>Movento</td>
<td></td>
<td>24</td>
<td>7</td>
<td>23</td>
<td>Tetrocic/Tetramic Acid</td>
</tr>
<tr>
<td>Buprofezin</td>
<td>Applaud</td>
<td></td>
<td>12</td>
<td>7</td>
<td>16</td>
<td>Insect Growth Regulator</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>Platinum</td>
<td>Must not be used when bees are present and/or if flowering plants are within the drip zone. All LIVE Green List activities must be performed and documented prior to application. Chemistry may then be applied through drip irrigation. See LIVE Green List for details.</td>
<td>12</td>
<td>60</td>
<td>4A</td>
<td>Neonicotinoid</td>
</tr>
<tr>
<td>Dinotefuran</td>
<td>Venom</td>
<td>Must not be used when bees are present and/or if flowering plants are within the drip zone. All LIVE Green List activities must be performed and documented prior to application. Chemistry may then be applied through drip irrigation. See LIVE Green List for details.</td>
<td>12</td>
<td>SL</td>
<td>4A</td>
<td>Neonicotinoid</td>
</tr>
</tbody>
</table>
This is a list of approved pesticide controls for the LIVE vineyard certification program. Go to the Green List first—these controls are permitted only for key pressure occurrences not adequately managed with Green List measures. Section headers note target pests and applicable regions, and provide links to the corresponding Green List entry and additional pesticide data. Pesticides are listed by active ingredient with important LIVE restrictions noted. Contact admin@livecertified.org with questions.

Controls for Lecanium Scale Insects

Lecanium scale insects are generally found on 1-3 year old wood. Control measures may not be necessary if infestation is limited to parts of the vine removed during pruning. Parasitic wasps are a natural enemy. Listed for Region 2 only. See Green List for detail.

<table>
<thead>
<tr>
<th>ACTIVE INGREDIENT</th>
<th>COMMON TRADE NAMES</th>
<th>RESTRICTIONS</th>
<th>REI (hours)</th>
<th>PHI (days)</th>
<th>MOA CODE</th>
<th>CHEMICAL FAMILY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petroleum Oil, Paraffin Base</td>
<td>Omni Supreme and others</td>
<td>Apply at 50% and again at 90% egg hatch. Vines must be well watered. Must not be applied ten days before and after a sulfur application to avoid phytotoxicity. Good coverage is essential. Do not apply when pollinators are present.</td>
<td>4</td>
<td>0</td>
<td>Narrow Range Horticultural Oil</td>
<td></td>
</tr>
<tr>
<td>Spirotetramat</td>
<td>Movento</td>
<td></td>
<td>24</td>
<td>7</td>
<td>23</td>
<td>Tetrocic/Tetramic Acid</td>
</tr>
</tbody>
</table>

Controls for Rodents

Voles and pocket gophers can girdle vines and cause dangerous conditions for tractors and workers. Non-chemical control includes disrupting burrows with cultivation and promoting habitat for owls and kestrels. Vineyards may tolerate low to moderate rodent damage. See Green List for detail.

<table>
<thead>
<tr>
<th>ACTIVE INGREDIENT</th>
<th>COMMON TRADE NAMES</th>
<th>RESTRICTIONS</th>
<th>REI (hours)</th>
<th>PHI (days)</th>
<th>MOA CODE</th>
<th>CHEMICAL FAMILY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinc Phosphide (ZP)</td>
<td>Multiple Names</td>
<td>May only be applied after all Green List cultural controls have been exhausted and damage is documented. ZP is a restricted use chemical and must be applied by a licensed pesticide applicator. ZP is a non-selective poison. Use of ZP must be discontinued immediately if any non-target organisms are affected. Especially vulnerable are Canadian geese, dogs, and deer. Baiting and/or trapping may not be legal depending on your state’s laws and the label of the product you are using. Follow the label and the law.</td>
<td>0</td>
<td>0</td>
<td></td>
<td>inorganic-Zinc</td>
</tr>
</tbody>
</table>
This is a list of approved pesticide controls for the LIVE vineyard certification program. Go to the Green List first—these controls are permitted only for key pressure occurrences not adequately managed with Green List measures. Section headers note target pests and applicable regions, and provide links to the corresponding Green List entry and additional pesticide data. Pesticides are listed by active ingredient with important LIVE restrictions noted. Contact admin@livecertified.org with questions.

Controls for **Flea Beetle**

An occasional pest that mature vineyards can withstand without control but that can be catastrophic for young vines. *Listed for Region 2 only*. See Green List for detail.

<table>
<thead>
<tr>
<th>ACTIVE INGREDIENT</th>
<th>COMMON TRADE NAMES</th>
<th>RESTRICTIONS</th>
<th>REI (hours)</th>
<th>PHI (days)</th>
<th>MOA CODE</th>
<th>CHEMICAL FAMILY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinosad</td>
<td>Success</td>
<td>Maximum of one (1) application per growing season. Time application to minimize risk of drift and allow for a buffer of at least 3 hours (preferably more) prior to pollinator activity.</td>
<td>4</td>
<td>7</td>
<td>5</td>
<td>Microbial</td>
</tr>
</tbody>
</table>